#E00623. 2 的幂次表示

2 的幂次表示

输入 nn,请仅用 2 和 0 通过幂次和加法将其表示出来

例:

$$\begin{aligned} 11 & = 2^3 + 2^1 + 2^0 \\ & = 2^{2^1 + 2^0} + 2^{2^0} + 2^0 \\ & = 2^{2^{2^0} + 2^0} + 2^{2^0} + 2^0 \end{aligned} $$

又例:

$$\begin{aligned} 233 & = 2^7 + 2^6 + 2^5 + 2^3 + 2^0 \\ & = 2^{2^2 + 2^1 + 2^0} + 2^{2^2 + 2^1} + 2^{2^2 + 2^0} + 2^{2^1 + 2^0} + 2^0 \\ & = 2^{2^{2^1} + 2^{2^0} + 2^0} + 2^{2^{2^1} + 2^{2^0}} + 2^{2^{2^1} + 2^0} + 2^{2^{2^0} + 2^0} + 2^0 \\ & = 2^{2^{2^{2^0}} + 2^{2^0} + 2^0} + 2^{2^{2^{2^0}} + 2^{2^0}} + 2^{2^{2^{2^0}} + 2^0} + 2^{2^{2^0} + 2^0} + 2^0 \end{aligned} $$

注意观察输出顺序

0n26410 \leq n \le 2^{64} - 1

11
2 ^ (0) + 2 ^ (2 ^ (0)) + 2 ^ (2 ^ (0) + 2 ^ (2 ^ (0)))
233
2 ^ (0) + 2 ^ (2 ^ (0) + 2 ^ (2 ^ (0))) + 2 ^ (2 ^ (0) + 2 ^ (2 ^ (2 ^ (0)))) + 2 ^ (2 ^ (2 ^ (0)) + 2 ^ (2 ^ (2 ^ (0)))) + 2 ^ (2 ^ (0) + 2 ^ (2 ^ (0)) + 2 ^ (2 ^ (2 ^ (0))))